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Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept

Hudong Chen
Exa Corporation, 125 Cambridge Park Drive, Cambridge, Massachusetts 02140

~Received 25 March 1998!

A lattice Boltzmann algorithm based on a volumetric representation is formulated for achieving properties
consistent with the standard form at finer resolution. In contrast to pointwise interpolation schemes, this
approach can be applied to arbitrary meshes without compromising exact conservation or equilibrium proper-
ties. @S1063-651X~98!01709-7#

PACS number~s!: 02.70.2c, 47.27.2i, 51.10.1y
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I. INTRODUCTION

The importance of the lattice Boltzmann~LB! method for
computational fluid dynamics~CFD! has recently become
well recognized@1–8#. This method possesses certain cle
advantages over conventional CFD methods, such as its
in handling flows with multiple immiscible phases@9–12#,
and the physical implementation of complex boundary c
ditions. One recent effort is to extend its order of accura
and flexibility so that its spatial resolution requirements
various flow situations may be reduced and may be ada
to more general meshes. Attempts at this have already b
made based on the technique of pointwise interpolation@13#.
However, such a pointwise representation, as we will rea
below, has shown difficulties in preserving certain fund
mental properties in LB on nonuniform meshes. In this pa
we present an alternative approach based on a volum
representation, which removes these essential difficul
The concept of using a finite-volume approach in LB w
introduced by Benziet al. in 1992 @14#. However, our for-
mulation is somewhat different and is worked out system
cally in detail. Furthermore, it perhaps offers a clearer int
pretation of the underlying physics. The general algorithm
the present approach is simple and is applicable with exp
itly defined accuracy to arbitrary meshes. In addition, wh
used on uniform meshes, the resulting finite-volume Bo
mann equation is shown to produce the same hydrodyna
at lower required resolution compared to that of the stand
lattice Boltzmann equation. Physically, the present formu
tion implies a possibility of alternative theoretical constru
tions of subgrid fluid turbulence models based on a Bo
mann representation rather than the Navier-Sto
hydrodynamics.

A basic LB system is conventionally represented by
Boltzmann difference equation@lattice Boltzmann equation
~LBE!# on aD-dimensional Bravis latticeLf

ni~x,t1Dt !5ni8~x2 ĉi ,t ! ; xPLf , ~1!

whereni(x,t) (>0) is the particle distribution function fo
momentum stateĉi on a lattice sitex at time stept. The
spatial vectors of the set$ĉi ; i 50, . . . ,b% are links between a
site to its specified neighboring sites. Physically, Eq.~1! can
be interpreted as particles with momentumĉi hop from lat-
tice sitex2 ĉi to its indicated destination sitex during a time
PRE 581063-651X/98/58~3!/3955~9!/$15.00
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increment Dt. The quantityni8(x,t) @[ni(x,t)1V i(x,t)#
represents a postcollision particle distribution. The differen
between the pre- and the postcollision distributionsV i(x,t)
is usually interpreted to be due to a collision process
drives the system to a local equilibrium and satisfies so
basic local conservation conditions

(
i

j iV i~x,t !50, ~2!

with j i51, ĉi , and possiblye i ([ ĉi
2/2), corresponding to

mass, momentum, and energy conservation, respectiv
One of the simplest forms ofV i is the Bhatnagar-Gross
Krood ~BGK! operator@7,16#,

V i~x,t !52
Dt

t
@ni~x,t !2ni

eq~x,t !#, ~3!

whereni
eq(x,t) is the prescribed local equilibrium distribu

tion function which, as indicated by Eq.~2!, has the same
corresponding mass, momentum and energy values
ni(x,t), that is,

(
i

ni
eq~x,t !5(

i
ni~x,t ![n~x,t !,

1

Dt (i
ĉini

eq~x,t !5
1

Dt(i
ĉini~x,t !

[n~x,t !u~x,t !,
~4!

1

Dt2 (i
e ini

eq~x,t !5
1

Dt2(i
e ini~x,t !

[
1

2
n~x,t !u2~x,t !1n~x,t !

DT~x,t !

2
,

where the hydrodynamic quantitiesn(x,t), u(x,t) andT(x,t)
are, respectively, the site-wise particle number, fluid vel
ity, and temperature, respectively. According to the above
LB dynamic system involves two fundamental steps: adv
tion and collision. Each fundamental step satisfies the
quired global conservation laws exactly. It has been sho
that, with some appropriate choice of lattices~such as two-
dimensional hexagonal or four-dimensional face-center
3955 © 1998 The American Physical Society
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3956 PRE 58HUDONG CHEN
hypercube lattices! together with suitable equilibrium form
for ni

eq(x,t) as a function of local hydrodynamic variables
n(x,t), u(x,t), and T(x,t), the evolutions of the hydrody
namic quantities governed by such a LB system obey
viscous Navier-Stokes fluid equations at the long-wavelen
and low-frequency limit@2,7,8#.

As have been pointed out by Caoet al. @17#, the LBE
represented by Eq.~1! can be viewed as just a particula
first-order finite difference~on a particular mesh spanned b
$ĉi%) approximation to a differential equation in a continuu
space

]ni~x,t !

]t
Dt1 ĉi•¹ni~x,t !5V i~x,t !. ~5!

The reason that Eq.~1! is able to achieve a correct viscou
hydrodynamics is that the resulting second-order spatial e
term has the same form as that produced via the phys
collision process, so that it can be absorbed to form a n
viscosity definition. This makes the overall method on a u
form mesh second-order accurate as necessary for vis
hydrodynamics. However, such a redefined viscosity is s
sitively dependent on the grid resolution and immediat
breaks down when a general mesh is used. Also, becau
this reason and some stability considerations, the minim
attainable viscosity value at a given resolution is still larg
than desirable for the purpose of efficiently simulating hi
Reynolds number flows. On the other hand, the differen
form of Eq. ~5! is in principle not constrained by these lim
tations.

Nevertheless, it is convenient to keep using the LBE fo
of Eq. ~1! as our basic starting point. We can construct a
other difference equation on a coarser mesh based on
discrete system defined on a denser underlying lattice. In
doing, we must make sure that the new system on a coa
mesh recovers the original finer mesh LBE with necess
accuracy for realizing the same viscous hydrodynamics.

II. POINTWISE INTERPOLATION AND ITS PROBLEMS

The most direct way to extend Eq.~1! onto a more genera
mesh is via a pointwise interpolation procedure@13#. Obvi-
ously, if the new meshLc is not the original lattice spanne
by the basis momentum vectors$ĉi%, and ifx is a node of the
new mesh,x2 ĉi may not always be another node. Hence
quantityni8(x2 ĉi ,t) needs to be reconstructed according
the valid information on the new neighborhood mesh nod

To achieve necessary three-dimensional~3D! viscous hy-
drodynamics, it can be shown thatni8(x2 ĉi ,t) must be ap-
proximated through at least a second-order interpola
scheme. In particular, its explicit form on a 3D nonunifor
Cartesian mesh can be shown to be

ni8~x2 ĉi ,t !'ñi8~x2 ĉi ,t !

[ (
a50

2

(
b50

2

(
g50

2

Pabg
i ~x!

3ni8„x2Dabg
i ~x!,t….

~6!

In the above,ni8„x2Dabg
i (x),t… is the postcollision distribu-
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tion on a valid neighborhood nodex2Dabg
i (x) (PLc).

Naturally, the optimal choice for obtaining the best loc
accuracy is forx2Dabg

i (x) to be one of the nearest-neighb

nodes of x2 ĉi . The geometric weightPabg
i (x) for the

second-order interpolation scheme has the form

Pabg
i ~x!5 )

s5x,y,z
S Da8b8g8,s

i
~x!2ci ,s

Da8b8g8,s
i

~x!2Dabg,s
i ~x!

D
3S Da9b9g9,s

i
~x!2ci ,s

Da9b9g9,s
i

~x!2Dabg,s
i ~x!

D ~7!

where the subscript a85a11(mod2) and a95a
12(mod2). Similar definitions apply tob8, b9, g8, andg9.
It is readily verified that

(
a50

2

(
b50

2

(
g50

2

Pabg
i ~x!51 ; xPLc , ~8!

which is the detailed-balance relation necessary to admit
physical uniform flow as an equilibrium solution of the sy
tem. On the other hand, one can see that the global par
conservation via advection requires the normalizability co
dition

(
a50

2

(
b50

2

(
g50

2

Pabg
i

„x1Dabg
i ~x!…51 ; xPLc . ~9!

Thus if the condition is realized, one can show that summ
tion over all nodes in the system gives

(
x

ñi8~x2 ĉi ,t !5(
x

ni8~x,t ! ~10!

when boundary conditions are ignored.
Several features of such a scheme are worth noting. F

of all, it is straightforward to show that the second-ord
interpolation ñi8(x2 ĉi ,t) gives the same result up to th

second-order spatial derivatives asni8(x2 ĉi ,t). Therefore, it
gives rise to the same hydrodynamics having the same l
ing order viscous transport coefficient values as that of
LBE. Second, if the new mesh is a uniform one, then, as
the original LBE, the global particle conservation is satisfi
exactly by the second-order approximation. This is beca
Pabg

i (x) for uniform meshes becomes independent ofx, so
that the normalizability condition~9! and the detailed-
balance relation~8! are satisfied simultaneously. As a pa
ticular example, we select the neighboring Cartesian m
nodes ofx2 ĉi to be$x2Dabg

i ;a,b,g50,1,2%, with

Dabg
i 5sgn~ci ,x!aDxx̂1sgn~ci ,y!bDyŷ

1sgn~ci ,z!gDzẑ, ~11!

where x̂, ŷ, and ẑ are the unit vectors indicating the thre
Cartesian coordinate directions.Ds (s5x, y, or z) repre-
sents the distance between two nearest-neighbor nodes a
thex, y, or z direction, respectively. For this case, the weig
takes a simple form
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Pabg
i 5Pa

i ,xPb
i ,yPg

i ,z , ~12!

with

P0
i ,s5S Ds2uci ,su

Ds
D S 2Ds2uci ,su

2Ds
D ,

P1
i ,s5S uci ,su

Ds
D S 2Ds2uci ,su

Ds
D , ~13!

P2
i ,s52S uci ,su

2Ds
D S Ds2uci ,su

Ds
D .

Based on physical considerations@2,8#, we know that exact
conservation laws are essential for such a system to real
fully self-consistent and stable microdynamics at all tim
even though the method is only second-order accurat
achieving Navier-Stokes hydrodynamics. Unfortunate
such exact conservation conditions are lost in the ab
second-order pointwise interpolation scheme for nonunifo
meshes. In fact, the conservation laws themselves also
come only second-order accurate. One might attemp
modify the geometric weights in order to reenforce the ex
conservations. The problem is that in so doing it does
seem possible to avoid violating the detailed balance r
tions necessary for maintaining absolute equilibrium, so t
local anomalous currents or gradients emerge out of a qu
cent unforced situation. Moreover, there are additional mi
undesirable features in such a scheme. For instance, the
ber of neighborhood points used for interpolating a 3D po
is relatively large (527) for performing efficient computa
tions. Another physically undesirable problem is that at le
one of the weights,Pabg

i is negative. This means that
negative amount of particles propagate in several directio
Consequently, negative particle distributions may occur
some local spatial domains under certain circumstances

III. VOLUMETRIC FORMULATION
ON A GENERAL MESH

The key problem associated with the pointwise repres
tation is that the density function is not well defined due
the lack of a volumetric measure, except for the trivial u
form mesh situation in which the sitewise particle numb
n(x,t) can be interpreted as the number density.

An alternative formalism is to adopt the finite-volum
concept@14,15#. Instead of viewing particles as residing o
discrete mesh nodes, we imagine a continuum space b
divided into cells of various shapes and volumes. We
label a cell by the mesh nodex̄ it encloses. The volume o
the cell x̄ is given by

V~ x̄![E
D~ x̄!

d3x, ~14!

where the volume integration is restricted in the spatial
main D( x̄) defined for the cell. The summation of all ce
domains should be equal to the entire continuum spa
spaceM of the system; otherwise there is no unique cho
of each cell domain. On the other hand, it is advantage
and convenient to construct them in such a way that~i! it
a
,
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naturally reduces to cells of equal shape and volume for
cases of uniform meshes and~ii ! the mesh node coincide
with the geometric center of its corresponding cell defined

x̄5
1

V~ x̄!
E

D~ x̄!
x d3x. ~15!

Because we have now a well-defined volumetric meas
given by Eq.~14!, the mean distribution function density fo
cell x̄ can be defined as

ni~ x̄,t ![Ni~ x̄,t !/V~ x̄!, x̄PLc , ~16!

whereNi( x̄) is the total particle number with momentumĉi

residing within cellx̄.
We imagine that the space spanned on the original de

lattice grids by$ĉi% is now divided into various subspace
specified by the cell domains and particles have a continu
distribution within each cell domain. If the particles adve
according to the original lattice velocities, then some port
of the particles in a cell will move across the cell bounda
into other cells. This is a coarse-grained representation of
original underlying lattice dynamics in the finite-volum
sense. Note the coarse-grained representation is not an
proximation if the exact particle distributions within a ce
are known. The finite-volume lattice Boltzmann equation c
be described by the generic expression

Ni~ x̄,t1Dt !5(
x̄8

Fi~ x̄8→ x̄,t !, ~17!

whereNi( x̄,t1Dt) is the total particle number with momen
tum ĉi in cell x̄ at time stept1Dt. Fi( x̄8→ x̄,t), referred to
as the state-flux function, represents the number of parti
with momentumĉi that cross from cellx̄8 to x̄ during timet
to t1Dt due to advection. Global particle conservation
guaranteed if the state-flux function satisfies the conditio

(
x̄

Fi~ x̄8→ x̄,t !5Ni8~ x̄8,t ! ; x̄8PLc . ~18!

It is easily recognized that the finite-volume representat
gives the same results if the state-flux function exactly c
responds to the original particle dynamics on the underly
lattice. Specifically, the sufficient condition for achieving th
original LBE is

(
x̄8

Fi~ x̄8→ x̄,t !5V~ x̄!ni8~ x̄2 ĉi ,t !, ~19!

whereni8( x̄2 ĉi ,t) is the postcollision state density functio

at x̄2 ĉi (PLf). The proof is trivial by plugging Eq.~19! into
Eq. ~17! directly. However, to realize up to the correct vi
cous order hydrodynamics, it can be shown that we req
only
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(
x̄8

Fi~ x̄8→ x̄,t !5V~ x̄!@12 ĉi•“1 1
2 ĉi ĉi :““#

3ni8~ x̄,t !1O~“3!, ~20!

which is an approximation to Eq.~19! by keeping Taylor
expanded terms to the second order.

We need to construct the above state-flux functionFi( x̄8

→ x̄,t) based only on information that exists on the ne
mesh nodes. We first introduce the notion of a density d
tribution ñi(x,t) inside each continuous cell domain spa
xPD( x̄). Hence

E
D~ x̄!

ñi~x,t !d3x5Ni8~ x̄,t ![V~ x̄!ni8~ x̄,t ! ~21!

whereNi8( x̄,t) is the postcollision particle number with mo

mentumĉi in cell x. Using this notion, the state-flux functio
can be immediately constructed: Advection byĉi simply per-
forms a rigid-body translation of the distribution from i
original spatial domain@i.e., D( x̄)] to a new domain. As a
result, the fraction of particles in the original cellx̄ that will
fall into a new cellx̄8 are the particles initially residing in a
subdomain ofD( x̄) that overlaps withD2 i( x̄8). The latter
represents a domain of space that is a rigid-body transla
of D( x̄8) by 2 ĉi . Based on this picture, we can readi
express the state-flux function as

Fi~ x̄→ x̄8,t !5E
D~ x̄!ùD2 i ~ x̄8!

ñi~x,t !d3x. ~22!

Apparently, the finite-volume representation produc
equivalent dynamics ifñi(x,t) were to correspond to th
particle distribution on the original underlying lattice.

Theorem.A sufficient condition for achieving Eq.~20! is
to have

ñi~x,t !5ni8~ x̄,t !1~x2 x̄!•“̃n
i8

~ x̄,t !

1 1
2 ~x2 x̄!~x2 x̄!:“̃“̃ni8~ x̄,t !, ~23!

where“̃ and“̃“̃ represent finite-difference approximation
based onLc to the spatial gradient“ and““, respectively,
which must be accurate up toO(¹2).

A detailed proof is given in the Appendix. Here we pr
vide explanations of some essential features. The exp
form in Eq.~23! suggests that it is not enough to simply tre
the distribution as constant inside each cell, which would
the case if the second and third terms were neglected. Ind
when there are differences in particle densities among c
in the vicinity, continuity suggests that the distributio
within a cell domain would not be a constant if a finer gr
were present. As one can see directly~cf. the Appendix!,
these additional gradient terms“ni8( x̄,t) and““ni8( x̄,t) are
necessary to produce correct convection and diffusion hy
dynamic properties for an arbitrary mesh. Therefore,
should reconstruct them based on the available neighborh
-

n
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it
t
e
ed,
lls

o-
e
od

information. The corresponding state-flux function given
Eqs.~22! and ~23! can be integrated to give

Fi~ x̄→ x̄8,t !5Vi~ x̄,x̄8!@ni8~ x̄,t !

1A i~ x̄,x̄8!•“̃ni8~ x̄,t !

1Bi~ x̄,x̄8!:“̃“̃ni8~ x̄,t !# ~24!

where the purely geometric quantitiesVi( x̄,x̄8), A i( x̄,x̄8)
andBi( x̄,x̄8) are completely determined once the mesh a
all the associated cell shapes are specified. These are

Vi~ x̄,x̄8![E
D~ x̄!ùD2 i ~ x̄8!

d3x,

Vi~ x̄,x̄8!A i~ x̄,x̄8![E
D~ x̄!ùD2 i ~ x̄8!

~x2 x̄!d3x, ~25!

Vi~ x̄,x̄8!Bi~ x̄,x̄8![E
D~ x̄!ùD2 i ~ x̄8!

1

2
~x2 x̄!~x2 x̄!d3x.

In particular, if a Cartesian~not necessarily uniform! mesh is
used, these geometric quantities, as well as the finite dif
ences of the derivatives, can be analytically expressed
cause of the simple rectangular cell shapes and integra
boundaries. However, due to their tedious mathematical
pressions, we omit presenting them here. The physical m
ing of Eq. ~24! is clear: The quantityVi( x̄,x̄8) is simply the
overlapping volume between two cells due to advection
we had assumed the particle distribution inside a cell to
uniform, then the number of particles that move from o
cell to another would just beVi( x̄,x̄8)Ni8( x̄,t)/V( x̄), which
trivially adds up to give the total particle number defined
Eq. ~21!. However, the additional terms in Eq.~23! do not in
general satisfy Eq.~21!. @We can recognize that this is be
cause of the second derivative term in Eq.~23!.# This does
not pose a problem with regard to exact particle conserva
in the system since it is determined by the condition for
state-flux function~18!. For such a purpose, we can simp
redefine the ‘‘self-advection’’ part of state-flux function b
including an extra term

Fi~ x̄→ x̄,t !5Ni8~ x̄,t !2 (
x̄8Þ x̄

Fi~ x̄→ x̄8,t !

[E
D~ x̄!ùD2 i ~ x̄8!

ñi~x,t !d3x1u i~ x̄,t !, ~26!

where the other state-flux functions~for x̄8Þ x̄) are still de-
fined by Eqs.~22! and ~23!. Fortunately~shown in the Ap-
pendix!, the extra term in Eq.~26! does not introduce any
error in the resulting hydrodynamics. Consequently, the p
ticle conservation laws are exactly enforced.

Unlike the pointwise interpolation scheme, it is importa
to realize that the equilibrium condition is also automatica
satisfied by Eqs.~24! and ~26!. This is because when th
fluid is spatially homogeneous@ni8( x̄,t)5ni( x̄,t)5n̄i #, the

gradient terms vanish@and so doesu i( x̄,t) in Eq. ~26!#. Plug-
ging it in Eq. ~17! we have
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V~ x̄!ni5(
x̄8

Vi~ x̄8,x̄!ni . ~27!

Hence the constant density distribution is an equilibrium
lution of the dynamic equation if

(
x̄8

Vi~ x̄8,x̄!5V~ x̄!. ~28!

This is indeed the case due to the volumetric measure
fined above. Note, as mentioned previously, that this pr
erty is not automatically satisfied in the pointwise interpo
tion scheme. Equation~17!, together with Eqs.~24! and~26!,
completely specifies the finite-volume coarse-grained lat
Boltzmann algorithm on any general mesh.

IV. SUPERGRID LATTICE DYNAMICS

The above basic formalism is valid for any choice
mesh. However, it is in fact quite useful to apply the pres
method even to a uniform Cartesian mesh. In particular,
can choose the meshLc to be the same lattice as for th
original LBE but with coarser resolution, so that each n
cell now becomes a block containing an integer multiple
original cells. If we defineD andc as the linear dimension
of the coarser and the original cells, respectively, then e
new cell containsM5(D/c)D original cells. As discussed
previously, the standard LBE produces higher than desira
viscous effects at a given lattice resolution. In contrast,
present formulation is essentially a higher-order numer
scheme: It produces the same viscous hydrodynamics in
long-wavelength limit with a coarser resolution as the st
dard LBE. The physical reason why the present system
capable of accomplishing this is the fact that the parti
distribution within a cell has virtually a nonuniform profile
while it is simply a constant for the original LBE. Anothe
reason is related to having a more relaxed Courant cond
in the formulation. Compared to the pointwise interpolati
scheme, the present volumetric scheme is more efficient
numerical algorithm and also possesses much clearer p
cal meaning as a self-consistent dynamical system. Ph
cally, the present formalism can be interpreted as a ‘‘blo
spin’’ representation of the original finer mesh LB system
has been generally argued that a coarse-graining realiza
of an underlying continuum~or fine grained! process is more
accurate than that of the conventional finite differenc
@18#.

For the particular case of a uniform Cartesian mesh,
formulation presented here becomes significantly simplifi
The specific reason for the significant simplification is th
because of some self-cancellations, the second deriva
terms in Eqs.~23! and ~24! can be omitted without sacrific
ing accuracy in the resulting hydrodynamics. This feat
can be verified directly by showing that the expression~24!
without the second-derivative term still gives rise to Eq.~20!
on a uniform mesh. Also, because of the exclusion of
second-derivative terms, Eq.~21! now becomes exactly sa
isfied. All the geometric quantities defined above for a u
form Cartesian mesh can be easily calculated analytica
For example, the cell volume is justV(x)5V5DxDyDz ,
whereDs (s5x,y,z) is the distance between two neare
-
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neighbor mesh nodes along thes Cartesian coordinate direc
tion.

After straightforward volumetric integrations, we arrive
the algorithm for the finite-volume supergrid lattice Bolt
mann equation on a uniform Cartesian mesh

Ni~x,t1Dt !5 (
a50

1

(
b50

1

(
g50

1

Fi~x2Dabg
i →x,t !, ~29!

whereDabg
i has the same form as Eq.~11!, but its subindices

only go up to 1. The state-flux function has the explicit for

Fi~x→x1Dabg
i ,t !5Pa

i ,xPb
i ,yPg

i ,z@Ni8~x,t !1dNi ,abg8 ~x,t !#,
~30!

where the weights have the simple forms, the same as fo
linear interpolation,

P0
i ,s512

uci ,su
Ds

,
~31!

P1
i ,s5

uci ,su
Ds

,

which are positive for the choice ofDs>max(uci,su;i
51, . . . ,b) and s5x,y,z. The quantity dNi ,abg8 (x,t),
which is caused by a virtual spatial inhomogeneity within
cell, is defined as

dNi ,abg8 ~x,t ![
1

2
@~2a21!~12Pa

i ,x!Gx
i ~x,t !

1~2b21!~12Pb
i ,y!Gy

i ~x,t !

1~2g21!~12Pg
i ,z!Gz

i ~x,t !#, ~32!

where Gs
i (x,t) is a consequence of a finite-difference a

proximation~only requires a first-order accuracy! to the gra-
dient along thes Cartesian coordinate. Explicitly, these ca
be expressed as

Gs
i ~x,t !5~12ws!@Ni8„x1sgn~ci ,x!Dsŝ,t…2Ni8~x,t !#

1ws@Ni8~x,t !2Ni8„x2sgn~ci ,x!Dsŝ,t…#. ~33!

The choice of the parameterws is rather arbitrary and cor
responds to the chosen type of finite-difference for spa
derivatives. Specifically, a central difference is realized
ws51/2, while an ‘‘upper-wind’’ scheme corresponds
ws51. An analysis indicates that the greater value ofws

leads to more positive hyperviscous effects and the syste
always stable as long as 0<ws<1. To demonstrate such
effects, a series of numerical simulations of transverse s
soidal shear momentum decays was performed using
volumetrically formulated Boltzmann algorithm for the rat
D/c58. The corresponding measured viscosity values
presented in Fig. 1. The solid line represents the theore
value of the regular viscosity associated with the underly
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LB model. For the particular underlying BGK LB mode
used for these tests, its theoretical expression is given b

n5S Dt

t
2

1

2DT,

whereT is the local temperature. From the measurement,
see that the volumetrically averaged Boltzmann system
duces the same asymptotic viscosity value as that of the
derlying fine grid LB at the long wavelength limit. Howeve
the overall effective viscosity values form some cuspl
shapes that peak at small wavelengths. This is an indica
of an existence of hyperviscosity properties. Differe
choices ofws results in different hyperviscosity values. Wit
a carefully chosen value ofws , such hyperviscous effect
can be minimized without causing instability.

It can be directly verified algebraically that the state-fl
function given above exactly satisfies the particle conse
tion condition

(
a50

1

(
b50

1

(
g50

1

Fi~x→x1Dabg
i ,t !

5 (
a50

1

(
b50

1

(
g50

1

Pa
i ,xPb

i ,yPg
i ,zNi8~x,t !5Ni8~x,t !. ~34!

The additional contribution to fluxesdNi ,abg8 (x,t) plays the
role of redistributing particles among the fluxes but does
contribute any net change.

Several features of the present formulation can be c
pared to those of the pointwise interpolation scheme. Firs
all, because the summation upper bound is now 1 in Eq.~29!
instead of 2 in Eq.~6!, the number of neighboring points i
significantly reduced~i.e., it is now 8 instead of 27!. Though
it requires an additional calculation ofGs

i (x,t) at each node,
this also requires only nearest-neighbor information. He
this algorithm is more local. Second, not only do they ha

FIG. 1. Measured viscosityn ~in lattice units! as a function of
wavelengthl in cell unit. T50.42 andt50.5025. The solid line
represents the theoretical value of the regular viscosity. The cro
circles, and pluses are forws50, 20.04, and20.08, respectively.
e
o-
n-

on
t

a-

t

-
of

e
e

simpler forms, but the weights defined in Eq.~31! are posi-
tive definite as opposed to those in Eq.~13!. It has a form
equivalent to a first-order pointwise interpolation. As a co
sequence, the positivity constraint for the distribution fun
tion can be explicitly enforced locally via the conditio
Ni8(x,t)1dNi ,abg8 (x,t)>0. BecauseNi8(x,t)>0, the en-
forcement can be implemented easily by appropriately c
trolling the magnitude ofdNi ,abg8 (x,t) through reducing
Gs

i (x,t) since the latter can be multiplied by any factor wit
out compromising the conservation condition~34!.

V. DISCUSSION

In this paper we have presented a volumetric formulat
of the lattice Boltzmann dynamics. With properly chos
forms of the state-flux functions, both exact conservat
laws and equilibrium balance conditions are achieved a
the original LBE. In addition, the positive-definite nature
the particle distribution functions can be explicitly enforce
The overall algorithm results in a self-consistent physi
dynamical system, not merely a numerical method. Its m
roscopic properties obey Navier-Stokes hydrodynamics u
the same viscous order of accuracy as the standard LBE
finer lattice grid. The general formulation is applicable to
arbitrary mesh. As a reduced case on a uniform Carte
mesh, the algorithm reduces to a significantly simple fo
and shows an advantage over those based on some se
order interpolation schemes. It can be viewed as a block s
realization of the underlying LBE on a lattice of finer res
lution @18#.

However, the present supergrid averaging approach d
produce different~generally higher! hyperviscous effects
compared to that of the original underlying LBE on a fin
resolution lattice. This property has been verified nume
cally, demonstrating that the overall measured viscos
value increases as the flow length scale reduces. By try
various values ofws , without sacrificing stability, we can
adjust or minimize such hyperviscous effects. An empiri
optimal value to achieve a minimum hyperviscosity value
at ws;20.5c/Ds , wherec is the lattice unit of the original
lattice. On the other hand, such a hyperviscosity effect is
entirely undesirable or unphysical. Borrowing the eddy v
cosity concept@19#, the unresolved spatial variations indee
tend to generate cusplike dissipations at short wavelen
close to the resolution boundary. Therefore, we do not n
to necessarily eliminate it but to properly control its for
and magnitude.

The volumetric approach is easily generalized to achi
a physical boundary conditions. For simplicity, we discu
the no-slip condition for the supergrid regular lattice ca
The extension to the general mesh does not pose any fu
mental differences. A no-slip condition for simple lattice
can be realized at the kinetic level via the basic bounce-b
process as defined by the simple relation

Ni8~x2 ĉi ,t !5Ni*
8 ~x,t !,

wherex is a valid cell location adjacent to the boundary a
x2 ĉi lies outside the fluid domain.ĉi* 52 ĉi . The exten-
sion to the supergrid case is straightforward. For cellx adja-
cent to the boundary, the generalized bounce-back proce

es,
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to replace in Eq.~29! the state fluxesFi(x2Dabg
i →x,t) as-

sociated with the nonexistent cellsx̃5x2Dabg
i by Fi* (x

→x1Dabg
i* ,t) defined in Eq.~30!. Obviously,x1Dabg

i* 5x
2Dabg

i . Without the additional termsdNi ,abg8 (x,t), the
above can be easily understood to be equivalent to the b
bounce-back process. On the other hand, there is an a
tional step in the extended bounce-back process for the
pergrid case. That is, we need to properly construct
terms,dNi ,abg8 (x,t) according to Eqs.~32! and~33!. In fact,
all we need to do is to replace eitherNi8„x
1sgn(ci ,x)Dsŝ,t… or Ni8„x2sgn(ci ,x)Dsŝ,t… by Ni*

8 (x,t),

depending upon whether x1sgn(ci ,x)Dsŝ or x
2sgn(ci ,x)Dsŝ is a nonexistent cell site. It can be immed
ately verified that the overall bounce-back process descr
above for the supergrid lattice algorithm maintains mass
energy conservations in the system exactly. Because i
volves fewer neighborhood sites and no negative propa
tions as opposed to the pointwise interpolation scheme@13#,
the current implementation of the no-slip boundary condit
is more efficient and has a more clear physical mean
Furthermore, in this volumatric representation, a no-slip s
face is understood to be effectively located on the edge
these supergrid cells and the distances from the center
these cells to the surface are naturally one-half of the
unit ~i.e., D/2). As we know, this is necessary to produce
second-order accurate boundary condition@20#.

Finally, we wish to suggest as a preliminary concept t
the volumetric~block spin! constructions of the Boltzman
level representation may perhaps offer a possible alterna
in formulating large eddy turbulence models. Instead of i
posing an eddy viscosity form such as in the mixing-len
approximation or deriving large-scale properties based o
Navier-Stokes level representation@19#, we may systemati-
cally coarse grain the Boltzmann dynamics in which adv
tion is essentially linear. The fundamental quantities that
volumetric scheme is calculating are the state-flux functi
in the block averaged Boltzmann system. It is important
point out that the state-flux functions contain more inform
tion about the fluid properties within given scales than s
ply the fluid velocity field. Eddy-viscosity effects, and pe
haps more, can be generated by such an alternative appr
Once formulated, we can use such a block averaged Bo
mann algorithm to perform large scale turbulent flow sim
lations. On the other hand, the resulting large-scale hydro
namic equations may also be derived via a Chapman-Ens
transformation of such a Boltzmann system@21#.
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APPENDIX: PROOF OF THE THEOREM

According to Eqs.~22!, ~23!, and~26! we have

Fi~ x̄→ x̄8,t !5E
D~ x̄!ùD2 i ~ x̄8!

ñi~x,t !d3x

1u i~ x̄,t !d~ x̄2 x̄8!, ~A1!
sic
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where

ñi~x,t !5ni8~ x̄,t !1~x2 x̄!•“̃ni8~ x̄,t !

1
1

2
~x2 x̄!~x2 x̄!:“̃“̃ni8~ x̄,t !. ~A2!

The quantityd( x̄2 x̄8) is a Kronecker delta function. The
functionu i( x̄,t) is determined by the conservation conditio

(
x̄8

Fi~ x̄→ x̄8,t !5Ni8~ x̄,t !5V~ x̄!ni8~ x̄,t !. ~A3!

By directly substituting Eq.~A1! into the left-hand side of
Eq. ~A3! we get

(
x̄8

Fi~ x̄→ x̄8,t !5(
x̄8

H E
D~ x̄!ùD2 i ~ x̄8!

ni8~ x̄,t !d3x

1“̃ni8~ x̄,t !•E
D~ x̄!ùD2 i ~ x̄8!

~x2 x̄!d3x

1
1

2
“̃“̃ni8~ x̄,t !:E

D~ x̄!ùD2 i ~ x̄8!
~x2 x̄!

3~x2 x̄!d3xJ 1u i~ x̄,t !. ~A4!

Using the definition ofx̄ as a geometric center defined by E
~15!, the following essential properties are easily demo
strated:

(
x̄8

E
D~ x̄!ùD2 i ~ x̄8!

d3x5E
D~ x̄!

d3x5V~ x̄!,

(
x̄8

E
D~ x̄!ùD2 i ~ x̄8!

~x2 x̄!d3x5E
D~ x̄!

~x2 x̄!d3x50,

~A5!

(
x̄8

E
D~ x̄!ùD2 i ~ x̄8!

~x2 x̄!~x2 x̄!d3x5E
D~ x̄!

~x2 x̄!~x2 x̄!d3x.

We immediately see that Eq.~A4! becomes

(
x̄8

Fi~ x̄→ x̄8,t !5V~ x̄!ni8~ x̄,t !

1
1

2
“̃“̃ni8~ x̄,t !:E

D~ x̄!
~x2 x̄!~x2 x̄!d3x

1u i~ x̄,t !. ~A6!

Thus

u i~ x̄,t !52
1

2
“̃“̃ni8~ x̄,t !:E

D~ x̄!
~x2 x̄!~x2 x̄!d3x.

~A7!

With these expressions, the finite-volume LBE~17! be-
comes
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Ni~ x̄,t1Dt !5(
x̄8

H ni8~ x̄8,t !E
D~ x̄8!ùD2 i ~ x̄!

d3x 1“ni8~ x̄8,t !•E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄8!d3x

1
1

2
““ni8~ x̄8,t !:E

D~ x̄8!ùD2 i ~ x̄!
~x2 x̄8!~x2 x̄8!d3xJ 1u i~ x̄,t !1O~“3!. ~A8!

In the above, we have replaced“̃ by “, keeping in mind that their difference isO(“3) or higher. Taylor expanding Eq.~A8!

up to O(“2) aroundx̄, we get

Ni~ x̄,t1Dt !5(
x̄8

H Fni8~ x̄,t !1~ x̄82 x̄!•“ni8~ x̄,t !1
1

2
~ x̄82 x̄!~ x̄82 x̄!:““ni8~ x̄,t !G

3E
D~ x̄8!ùD2 i ~ x̄!

d3x1@“ni8~ x̄,t !1~ x̄82 x̄!•““ni8~ x̄,t !#

3E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄8!d3x

1
1

2
““ni8~ x̄,t !:E

D~ x̄8!ùD2 i ~ x̄!
~x2 x̄8!~x2 x̄8!d3xJ 1u i~ x̄,t !1O~“3!. ~A9!

Lets examine the quantity

(
x̄8

E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄8!d3x5(
x̄8

F E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄!d3x2E
D~ x̄8!ùD2 i ~ x̄!

~ x̄82 x̄!d3xG . ~A10!

However, it can be realized that by shifting the domain of integration we have

(
x̄8

E
D~ x̄8!ùD2 i ~ x̄!

x d3x5(
x̄8

E
Di ~ x̄8!ùD~ x̄!

~x2 ĉi !d
3x5E

D~ x̄!
~x2 ĉi !d

3x ~A11!

whereDi( x̄8) is the domain ofD( x̄8) rigid-body translated by distanceĉi . Therefore, together with Eqs.~A5!, Eq. ~A10!
becomes

(
x̄8

E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄8!d3x52 ĉiV~ x̄!2(
x̄8

~ x̄82 x̄!E
D~ x̄8!ùD2 i ~ x̄!

d3x. ~A12!

Inserting the result of Eq.~A12! into Eq. ~A9!, with the properties in Eq.~A5!, we get

Ni~ x̄,t1Dt !5V~ x̄!@ni8~ x̄,t !2 ĉi•“ni8~ x̄,t !#

1(
x̄8

H ~ x̄82 x̄!•““ni8~ x̄,t !•E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄!d3x

2
1

2
~ x̄82 x̄!~ x̄82 x̄!:““ni8~ x̄,t !E

D~ x̄8!ùD2 i ~ x̄!
d3x

1
1

2
““ni8~ x̄,t !:E

D~ x̄8!ùD2 i ~ x̄!
~x2 x̄8!~x2 x̄8!d3xJ 1u i~ x̄,t !1O~“3!. ~A13!
If we further write in the above

E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄8!~x2 x̄8!d3x

5E
D~ x̄8!ùD2 i ~ x̄!

@~x2 x̄!~x2 x̄!

2~x2 x̄!~ x̄82 x̄!2~ x̄82 x̄!~x2 x̄!

1~ x̄82 x̄!~ x̄82 x̄!#d3x, ~A14!
then Eq.~A13! is simplified to become

Ni~ x̄,t1Dt !

5V~ x̄!@ni8~ x̄,t !2 ĉi•“ni8~ x̄,t !#

1
1

2
““ni8~ x̄,t !:(

x̄8
E

D~ x̄8!ùD2 i ~ x̄!
~x2 x̄!~x2 x̄!d3x

1u i~ x̄,t !1O~“3!. ~A15!



ti

PRE 58 3963VOLUMETRIC FORMULATION OF THE LATTICE BOLTZMANN . . .
The second term on the right-hand side of the above equa
can be further simplified,

(
x̄8

E
D~ x̄8!ùD2 i ~ x̄!

~x2 x̄!~x2 x̄!d3x

5(
x̄8

E
Di ~ x̄8!ùD~ x̄!

~x2 x̄2 ĉi !~x2 x̄2 ĉi !d
3x

5E
D~ x̄!

~x2 x̄2 ĉi !~x2 x̄2 ĉi !d
3x

5E
D~ x̄!

~x2 x̄!~x2 x̄!d3x1V~ x̄!ĉi ĉi ~A16!

so that we have
.

n

h-
G

e
s,

G

y

onNi~ x̄,t1Dt !

5V~ x̄!@ni8~ x̄,t !2 ĉi•“ni8~ x̄,t !1 1
2 ĉi ĉi :““ni8~ x̄,t !#

1
1

2
““ni8~ x̄,t !:E

D~ x̄!
~x2 x̄!~x2 x̄!d3x

1u i~ x̄,t !1O~“3!. ~A17!

Comparing this result to Eq.~A7! for u i( x̄,t), we finally
arrive at the conclusion of Eq.~20!, that is,

Ni~ x̄,t1Dt !5(
x̄8

Fi~ x̄8→ x̄,t !

5V~ x̄!@ni8~ x̄,t !2 ĉi•“ni8~ x̄,t !

1 1
2 ĉi ĉi :““ni8~ x̄,t !#1O~“3!. ~A18!
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